3.147 \(\int \frac{\sec (c+d x) (A+B \sec (c+d x))}{\sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=78 \[ \frac{\sqrt{2} (A-B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{2 B \tan (c+d x)}{d \sqrt{a \sec (c+d x)+a}} \]

[Out]

(Sqrt[2]*(A - B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) + (2*B*Tan[c +
 d*x])/(d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.107447, antiderivative size = 78, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.097, Rules used = {4001, 3795, 203} \[ \frac{\sqrt{2} (A-B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{2 B \tan (c+d x)}{d \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*(A + B*Sec[c + d*x]))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(Sqrt[2]*(A - B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) + (2*B*Tan[c +
 d*x])/(d*Sqrt[a + a*Sec[c + d*x]])

Rule 4001

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*B*m + A*b*(m + 1))/(b*(
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B,
0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec (c+d x) (A+B \sec (c+d x))}{\sqrt{a+a \sec (c+d x)}} \, dx &=\frac{2 B \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}+(A-B) \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx\\ &=\frac{2 B \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}-\frac{(2 (A-B)) \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=\frac{\sqrt{2} (A-B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{\sqrt{a} d}+\frac{2 B \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.165721, size = 88, normalized size = 1.13 \[ \frac{\tan (c+d x) \left (\sqrt{2} (A-B) \tanh ^{-1}\left (\frac{\sqrt{1-\sec (c+d x)}}{\sqrt{2}}\right )+2 B \sqrt{1-\sec (c+d x)}\right )}{d \sqrt{1-\sec (c+d x)} \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]*(A + B*Sec[c + d*x]))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

((Sqrt[2]*(A - B)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]] + 2*B*Sqrt[1 - Sec[c + d*x]])*Tan[c + d*x])/(d*Sqrt[
1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.24, size = 200, normalized size = 2.6 \begin{align*}{\frac{1}{ad\sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( A\ln \left ( -{\frac{1}{\sin \left ( dx+c \right ) } \left ( -\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) -1 \right ) } \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -B\ln \left ( -{\frac{1}{\sin \left ( dx+c \right ) } \left ( -\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) -1 \right ) } \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -2\,B\cos \left ( dx+c \right ) +2\,B \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2),x)

[Out]

1/d/a*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(A*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-
1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-B*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*si
n(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-2*B*cos(d*x+c)+2*B)/sin(d*x
+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{\sqrt{a \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)/sqrt(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [A]  time = 0.565507, size = 751, normalized size = 9.63 \begin{align*} \left [-\frac{\sqrt{2}{\left ({\left (A - B\right )} a \cos \left (d x + c\right ) +{\left (A - B\right )} a\right )} \sqrt{-\frac{1}{a}} \log \left (\frac{2 \, \sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{-\frac{1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, B \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{2 \,{\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac{2 \, B \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) - \frac{\sqrt{2}{\left ({\left (A - B\right )} a \cos \left (d x + c\right ) +{\left (A - B\right )} a\right )} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right )}{\sqrt{a}}}{a d \cos \left (d x + c\right ) + a d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/2*(sqrt(2)*((A - B)*a*cos(d*x + c) + (A - B)*a)*sqrt(-1/a)*log((2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*
x + c))*sqrt(-1/a)*cos(d*x + c)*sin(d*x + c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1)/(cos(d*x + c)^2 + 2*cos(
d*x + c) + 1)) - 4*B*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d), (2*B*sqrt
((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c) - sqrt(2)*((A - B)*a*cos(d*x + c) + (A - B)*a)*arctan(sqrt(2)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(a*d*cos(d*x + c) + a*d
)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \sec{\left (c + d x \right )}\right ) \sec{\left (c + d x \right )}}{\sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))*sec(c + d*x)/sqrt(a*(sec(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [B]  time = 9.1963, size = 194, normalized size = 2.49 \begin{align*} \frac{\frac{2 \, \sqrt{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a\right )} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} + \frac{{\left (\sqrt{2} A - \sqrt{2} B\right )} \log \left ({\left | -\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt{-a} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

(2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*B*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)*sgn(tan(
1/2*d*x + 1/2*c)^2 - 1)) + (sqrt(2)*A - sqrt(2)*B)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*
x + 1/2*c)^2 + a)))/(sqrt(-a)*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d